Advanta CFTR NGS Library Prep Assay

Analytical Validation

For Research Use Only. Not for use in diagnostic procedures.

Outline

- 1. Overview of the Advanta™ CFTR NGS Library Prep Assay
- Analytical validation experimental design
- 3. Read performance metrics
- 4. Variant calling performance metrics
- 5. Summary and overview of available tools

Advanta CFTR NGS Library Prep Assay

Advanta CFTR NGS Library Prep Assay workflow

5 8 Amplify and Harvest. Pool and Run adapter Clean up. Prepare Load. Assess PCR. barcode. clean up. quality. reagents. Automated prep on Juno™ Single-tube 0.5–1 hr 4-5.5 hr or overnight harvest

The Advanta CFTR NGS Library Prep Assay provides excellent coverage of the CFTR gene

Analytical validation experimental design

Analytical validation study

The analytical validation by an external party assessed the performance and reproducibility of the Advanta CFTR NGS Library Prep Assay.

Performed by Q² Solutions® | EA Genomics

Analytical validation

Using a variety of sample types, performance was assessed for:

- Read performance metrics
- Variant call metrics
 - Accuracy
 - Sensitivity
 - Specificity
- Reproducibility

Variants refer to single-nucleotide variants (SNVs) and insertions and deletions (indels).

Analytical validation run design addressed several variables

Run	IFC	Operator	Reagent Lot
	LP 48.48 IFC 1		
Run 1	LP 48.48 IFC 2	Operator 1	Reagent Lot 1
	LP 48.48 IFC 3		
	LP 48.48 IFC 4		
Run 2	LP 48.48 IFC 5	Operator 2	Reagent Lot 1
	LP 48.48 IFC 6		
	LP 48.48 IFC 7		
Run 3	LP 48.48 IFC 8	Operator 1	Reagent Lot 1
	LP 48.48 IFC 9		
	LP 48.48 IFC 10		
Run 4	LP 48.48 IFC 11	Operator 1	Reagent Lot 1
	LP 48.48 IFC 12	_	
	LP 48.48 IFC 13		
Run 5	LP 48.48 IFC 14	Operator 2	Reagent Lot 2
	LP 48.48 IFC 15	_	
Run 6	LP 192.24 IFC 1	Operator 1	Reagent Lot 2
Run 7	LP 192.24 IFC 2	Operator 2	Reagent Lot 2
Run 8	LP 192.24 IFC 3	Operator 1	Reagent Lot 1

Analytical validation sample types

Sample Type	Description
Well-characterized (NIST) genomic reference samples (Coriell)	Purified genomic DNA that does not contain CF-causing variants.
CFTR variant-containing genomic samples (Coriell)	Purified genomic DNA that contains CF-causing variants.
Synthetic control DNA samples (MMQCI)	Plasmid DNA that contains CF-causing variants, including rare variants. (Advanta CFTR assays were not designed for synthetic constructs.)
Buccal swab, saliva, and whole blood	DNA extracted from these sample types that contain CF-causing variants (SNVs only). Samples are unmatched and not from the same donor.
No template control (NTC)	A buffer run in singlet for each integrated fluidic circuit (IFC). NTCs are expected to have no or very few reads.

NIST: National Institute of Standards and Technology

Coriell: Coriell Institute for Medical Research (from either the NIGMS Human Genetic Cell Repository, NHGRI Sample Repository for Human Genetic Research, or CDC Cell and DNA Repository)

MMQCI: Maine Molecular Quality Controls, Inc.

Sample number breakdown

Sample Type	Unique Samples	Total No. of Samples
Coriell NIST reference samples	3	132
Coriell CFTR variant-containing samples	112	732
MMQCI synthetic samples	6	234
Buccal	5	65
Saliva	5	58
Whole blood	5	57
NTC (run in singlet for each IFC)	n/a	18
Grand total	136	1,296

Number of samples by IFC:

• 15 x 48.48 IFCs (n=720)

• 3 x 192.24 IFCs (n=576)

Buccal, saliva, whole blood samples:

Run at two amounts (100 ng, n=117; 60 ng, n=56)

All other samples, except NTC, were run at 100 ng.

Analytical validation bioinformatics pipeline

Sample filters during analysis

- 14 samples did not meet threshold for reads during demultiplexing (1.1% of 1,296 samples), and these samples were excluded for analysis.
- Seven samples were excluded for analysis due to operator error during the library preparation process.

The 44 assays for SNVs/small indels were used to assess read performance metrics

All sample types were used in read performance assessments

- Specimens included gDNA (Coriell cell lines, buccal swabs, saliva, whole blood) and MMQCI synthetic samples.
- Design of MMQCI synthetic samples prevented proper annealing of some primer sets, leading to modification of metric calculations for MMQCI samples.
- Assays were designed for gDNA from natural, biologically derived samples and not for MMQCI samples.

Average assay read depth was at least 1,150x for all samples

Sample Type	Mean Depth across Amplicons
All Coriell genomic samples	2,576
MMQCI synthetic samples	1,469
Buccal	1,155
Saliva	1,389
Whole blood	3,105

Performance summary

Attribute	Observed Performance
Assay pass rate	99.3% (gDNA) 97.8% (MMQCI)
Amplicon uniformity	99.4% (gDNA) 98.2% (MMQCI)
Reads mapped to genome	≥99.9% (all sample types)
Reads mapped to target	≥99.99% (all sample types)
No template control (NTC) reads	NTC undetectable • 15/18 IFCs (undetected) • 3/18 IFCs (<0.02% total seq reads)

Assay pass rate

Analytical validation read performance metrics

Experimental Approach	Observed Performance
Proportion of samples with at least 95% of the target region covered by at least 50x read depth	99.3% (gDNA)
	97.8% (MMQCI)

95% of the target region covered by assays with at least 50x read depth

Amplicon uniformity

Experimental Approach	Observed Performance
Proportion of amplicons designed for SNV and indel detection within 1/5 to 5x mean amplicon	99.4% (gDNA)
depth within the sample	98.2% (MMQCI)

Sample Type	% Amplicons within Uniformity 1/5 to 5x of Mean
All Coriell genomic samples	99.27%
Buccal	99.24%
Saliva	99.48%
Whole blood	99.47%

Reads mapped to genome (%)

Experimental Approach % sequencing reads that map to genome hg19			Observed Performance ≥99.90% (all sample types)				
)
hg19 reference genome Sequencing reads Amplicon	% Mapping to genome	99.2% - 98.4% -	99.94	99.94	99.90	99.93	99.94
			Coriell	MMQCI	Buccal	Saliva V	Whole blood

Reads mapped to target (%)

Experimental Approach	1			Observe	ed Perfo	ormano	е
% reads that map to targ	et region out of tot	al mappe	d reads	≥99.99%	(all sar	nple ty	pes)
hg19 reference genome Sequencing reads Amplicon	Target	Mapping to targeted regions 6 8 9	%	100.00	99.99	99.99	99.99
		0`	Coriel	MMQCI	Buccal	Saliva	Whole blood

No template control (NTC) reads

Experimental Approach	Observed Performance
Used to assess cross-contamination within the 18 IFC runs	NTC undetectable15/18 IFCs (undetected)3/18 IFCs (<0.02% total seq reads)

Analytical validation variant call metrics

Evidence-based CFTR variant coverage

1078delT (d)	1898+3A->G	306delTAGA	4040delA	C524X	G550X	Q2X	S1251N
1119delA	1924del7	306insA	405+1G->A	CFTR50kbdel	G551D (a) (d)	Q39X	S1255P
1138insG	2055del9->A	3120+1G->A (a)	405+3A->C	CFTRdele1	G551S	Q414X	S1255X
1154insTC	2105-2117del13ins AGAAA	3120G->A	406-1G->A	CFTRdele14b-17b	G673X	Q493X	S341P
1161delC	2118del4	3121-1G->A	4209TGTT->AA	CFTRdele17a-18	G85E (a) (d)	Q525X	S466X
1213delT	2143delT (d)	3121-2A->G	4218insT	CFTRdele17a,17b	G970R	Q552X	S489X
1248+1G->A	2183AA->G or 2183delAA->G (d)	3132delTG	4279insA	CFTRdele2	H1054D	Q685X	S492F
1249-1G->A	2184delA (a) (d)	3171delC	4326delTC	CFTRdele2-4	H199Y	Q715X	S4X
124del23bp	2184insA (d)	3171insC	4374+1G->A	CFTRdele2,3 (d)	I1234V	Q890X	S549N
1259insA	2185insC	3271delGG	4374+1G->T	CFTRdele22-24	1336K (d)	Q98X	S549R
1288insTA	2307insA	3272-26A->G (d)	4382delA	CFTRdele22,23	1507del (a) (d)	R1066C	S912X
1341+1G->A	2347delG	3500-2A->G	4428insGA	CFTRdele4-7	K710X	R1066H	S945L
1461ins4	2372del8	365-366insT	442delA	CFTRdup6b-10	L1065P	R1102X	T338I
1471delA	2556insAT	3659delC (a) (d)	444delA	D110H	L1077P	R1158X	V520F
1497delGG	2585delT	3667ins4	457TAT->G	E1104X	L1254X	R1162X (a) (d)	W1089X
1525-1G->A	2594delGT	3737delA	541delC	E1371X	L206W	R117C	W1098X
1525-2A->G	2622+1G->A	3791delC	574delA	E193X	L227R	R117H + 5T (a)	W1145X
1548delG	2711delT	3821delT	621+1G->T (a) (d)	E56K	L467P	R334W (a) (d)	W1204X
1609delCA	2721del11	3849+10kbC->T (a) (d)	663delT	E585X	L732X	R347H	W1282X (a) (d)
1677delTA (d)	2732insA	3849+4A->G	675del4	E60X (d)	L88X	R347P (a) (d)	W19X
1717-1G->A (a) (d)	2789+5G->A (a) (d)	3850-1G->A	711+1G->T (a)	E822X	L927P	R352Q	W216X
1717-8G->A	2790-1G->C	3850-3T->G	711+3A->G	E831X	M1101K (d)	R553X (a) (d)	W401X
1782delA	2869insG	3876delA	711+5G->A	E92K	M1V	R560K	W496X
1811+1.6kbA->G	2896insAG	3878delG	712-1G->T	E92X (d)	N1303K (a) (d)	R560S	W57X
1811+1G->C	2942insT	3905insT (d)	852del22	F508del (a) (d)	P205S	R560T (a)	W846X
1812-1G->A	2957delT	394delTT	935delA	G1061R	P67L	R709X	W882X
1824delA	296+1G->A	4005+1G->A	991del5	G1244E	Q1042X	R75X	Y1092X (d)
182delT	296+1G->T	4010del4	A455E (a) (d)	G1349D	Q1313X	R764X	Y122X
1833delT	297-1G->A	4015delA	A46D	G178R	Q1382X	R785X	Y275X
185+1G->T	2991del32	4016insT	A559T	G27X	Q1411X	R792X	Y569D
1898+1G->A (a)	3007delG	4021dupT	A561E	G330X	Q1412X	R851X	Y849X
1898+1G->C	3028delA	4022insT	C276X	G542X (a) (d)	Q220X	S1196X	Y913X

Panel of 256 CFTR variants, from point mutations to large exonic del/dups, derived from the Clinical and Functional Translation of CFTR (CFTR2); available at cftr2.org; CF-causing variants from CFTR2_8August2016.xlsx (a) indicates variants (23) within the ACMG/ACOG recommendations. (d) indicates the minimum variants (31) required by German guidelines. **Bold** indicates the inclusion of at least one variant-bearing sample in the analytical validation.

CFTR variants tested in Coriell gDNA and MMQCI synthetic samples

Sample types used in variant call assessments

Sample Type	Sensitivity	Specificity	Accuracy	Reproducibility
*Coriell NIST reference samples	X	X	X	X
Coriell CFTR variant- containing samples	X			X
*MMQCI synthetic samples	Χ	Χ	X	X
Buccal, saliva, whole blood				X

^{*} NIST samples and synthetics had high confidence in known negative data. Variant calls were only considered with minimum allele frequency >10% and read depth >50x.

Performance summary

Analytical validation variant call metrics

Observed Performan	ce	
99.1% SNVs (Coriell) 99.7% indels (Coriell)		
•	•	
100% for all samples ((SNVs and indels)	
100% (Coriell) 99.99% (MMQCI)		
Sample	SNVs	Indels
Coriell	99.9%	99.5%
MMQCI	98.7%	96.4%
Blood	100%	N/A
Buccal	98.5%	N/A
Saliva	98.4%	N/A
	99.1% SNVs (Coriell) 99.7% indels (Coriell) 99.9% SNVs (MMQCI 96.1% indels (MMQCI 100% for all samples (100% (Coriell) 99.99% (MMQCI) Sample Coriell MMQCI Blood Buccal	99.7% indels (Coriell) 99.9% SNVs (MMQCI) 96.1% indels (MMQCI) 100% for all samples (SNVs and indels) 100% (Coriell) 99.99% (MMQCI) Sample SNVs Coriell 99.9% MMQCI 98.7% Blood 100% Buccal 98.5%

Sensitivity

The proportion of CFTR variant-positive positions correctly identified

Experimental Approach	Observed Performance
Sensitivity=TP/TP+FN	99.1% SNVs (Coriell) 99.7% indels (Coriell)
where TP = true positive and FN = false negative	99.9% SNVs (MMQCI)
112 Coriell samples (≥4 replicates each) + MMQCI samples	96.1% indels (MMQCI)

Specificity

The proportion of positions negative for variants correctly identified

Experimental Approach	Observed Performance
Specificity=TN/TN+FP	100% for all samples (SNVs and indels)
where TN = true negative and FP = false positive	
3 Coriell samples with known homozygous reference positions in the NIST database + MMQCI samples	

Accuracy

The proportion of correctly identified positive and negative for variants

Experimental Approach	Observed Performance
Accuracy = TP + TN/TP + TN + FP + FN	100% (Coriell)
Multiple replicates (37 to 44) of three Coriell samples + MMQCI samples	99.99% (MMQCI)

Reproducibility

Ability to get the same result upon repeat testing that accounts for sources of variability

Experimental Approach	Observed F	Performance	
Reproducibility= \sum (Matches across all comparisons)/ \sum (Matches and Mismatches across all comparisons) % concordance based on pairwise comparisons of all variables	Sample	SNVs	Indels
	Coriell	99.3%	99.5%
	MMQCI	98.7%	96.4%
	Blood	100%	N/A
	Buccal	98.5%	N/A
	Saliva	98.4%	N/A

Variables tested for pairwise comparison: operator, reagent lot, library preparation day, IFC type, and input amount.

Performance of large deletions and duplications

- CF-variant Coriell sample NA18688 was expected to have a 21 kb heterozygous deletion resulting in loss of exons 2 and 3.
- Amplification of the CFTR047_Del primer set was expected in samples positive for this deletion.
- This was identified across NA18688 all replicates (100% sensitivity).

Summary

Advanta CFTR NGS Library Prep Assay analytical validation summary

- External evaluator results demonstrate strong performance across a variety of sample types.
- The assay shows excellent read performance metrics and amplicon uniformity.
- High sensitivity, specificity and accuracy of CFTR variant calls is demonstrated across a variety of samples.
- Results were highly reproducible between technical replicates, reagent lots and operators.

Analytical validation white paper, study guidelines and example data are available upon request.

Thank you.

For Research Use Only. Not for use in diagnostic procedures.

©2018 Fluidigm Corporation. All rights reserved. Fluidigm, the Fluidigm logo, Advanta, and Juno are trademarks or registered trademarks of Fluidigm Corporation in the United States and/or other countries. All other trademarks are the sole property of their respective owners. 05/2018

Appendix

Estimated sequencing read depth

IFC Type	Number of IFCs	Number of Samples	Average Read Depth per Sample	Average Read Depth per Amplicon per Sample
48.48	1	48	312,000	4,200
48.48	2	96	156,000	2,100
48.48	4	192	78,000	1,000
48.48	8	384	39,000	500
192.24	1	192	78,000	1,000
192.24	2	384	39,000	500
192.24	4	768*	19,500	260
192.24	8	1,536*	9,700	130

Estimates are conservative. Factors used to determine the estimates:

- Use of the MiSeq Reagent Kit v2 and 15 M total reads passing filter per lane
- No negative control samples are included in these calculations.
- Assumes all 73 amplicons of CFTR panel amplified in all samples
- Average read depth per amplicon includes both ends of a paired-end read.

^{*} Dual indexing is required when sequencing more than 384 samples on a single lane.

Dual indexing for high sample multiplexing is effective with higher-output sequencers

Number of Samples	Average Read Depth per Amplicon per Sample (MiSeq)	Average Read Depth per Amplicon per Sample (NextSeq)
384	500	14,200
768	200	7,100
1,152	170	4,700
1,536	100	3,500

Estimates are conservative. Factors used to determine the estimates:

- Use of the MiSeq Reagent Kit v2 and 15M total reads passing filter per lane
- Use of the NextSeq[™] High Output Kit and 400M total reads passing filter per lane
- No negative control samples are included in these calculations.
- · Assumes all 73 amplicons of CFTR panel amplified in all samples
- Average read depth per amplicon includes both ends of a paired-end read.

Estimated CFTR amplicon sizes

Amplicons for SNVs and small indels

